21 resultados para INTERLEUKIN-10

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on long-term medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Contact hypersensitivity (CS) reaction in the skin is T-cell mediated immune reaction which plays a major role in the pathogenesis and chronicity of various inflammatory skin disorders and, like other delayed-type hypersensitivity (DTH) reactions, affords immunity against tumor cells and microbes. CS response is a self-limiting reaction, and interleukin (IL)-10 is considered to be a natural suppressant of cutaneous inflammatory response. Recently, it has been demonstrated that major depression is related to activation of the inflammatory response and elevation of some parameters of cell-mediated immunity. It has been suggested that such activation of the immune system may play a role in etiology of depression. If this immunoactivation is involved in etiology of depression, one would expect that antidepressant agents may have negative immunoregulatory effects. To the best of our knowledge, the effect of antidepressants on contact hypersensitivity has not been studied.

Methods: The aim of the present study was to establish the effect of prolonged desipramine or fluoxetine treatment on CS reaction to picryl chloride.

Results: Antidepressants significantly suppressed CS reaction, fluoxetine by 53% whereas desipramine by 47% compared to positive control. Moreover, desipramine and fluoxetine decreased relative weight of auxillary lymph nodes. Desipramine decreased also relative weight of inguinal lymph nodes and spleens whereas desipramine and fluoxetine increased production of IL-10 in comparison to positive control.

Conclusion: The observed effect of antidepressant drugs on CS reaction is consistent with the hypothesis that T-cell mediated immunity is targeted by antidepressants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strategy for a fast (ca. 20 min), specific, electrochemical immunoassay for the cardiac biomarker creatine kinase (CK) and the human cytokine interleukin 10 (IL10) has been developed in this paper. The polyaniline modified gold surface formed from electrochemical reduction of diazonium salt supplies a solid substrate to link the activated carboxylic acid groups from the antibodies, which were labelled with ferrocene. The direct electrochemistry of ferrocene allows the analysis of protein markers with good sensitivity. The creatine kinase sensor demonstrates limit of detection of 0.5 pg mL−1 in a physiological Krebs-Henseleit solution. The anti-IL10 antibody retained fluorescence activity after further coupling to ferrocene and covalent immobilization on to a gold electrode, showing a linear detection range for IL-10 from 0.001 ng mL−1 to 50 ng mL−1 in PBS. We attribute the high sensitivity to the well-controlled modified surface which results in end–on antibodies that can specifically capture the antigen with ease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somatostatin, originally identified as a peptide involved in neurotransmission, functions as an inhibitor of multiple cellular responses, including hormonal secretion and proliferation. Somatostatin acts through activation of G-protein-coupled receptors of which five subtypes have been identified. We have recently established that human CD34/c-kit expressing hematopoietic progenitors and acute myeloid leukemia (AML) cells exclusively express SSTR2. A major mechanism implicated in the antiproliferative action of somatostatin involves activation of the SH2 domain-containing protein tyrosine phosphatase SHP-1. While 0.1-1 x 10(-9) M of somatostatin, or its synthetic stable analog octreotide, can inhibit G-CSF-induced proliferation of AML cells, little or no effects are seen on GM-CSF- or IL-3-induced responses.
MATERIALS AND METHODS: To study the mechanisms underlying the antiproliferative responses of myeloblasts to somatostatin, clones of the IL-3-dependent murine cell line 32D that stably express SSTR2 and G-CSF receptors were generated. RESULTS: Similar to AML cells, octreotide inhibited G-CSF-induced but not IL-3-induced proliferative responses of 32D[G-CSF-R/SSTR2] cells. Somatostatin induced SHP-1 activity and inhibited G-CSF-induced, but not IL-3-induced, activation of the signal transducer and activator of transcription proteins STAT3 and STAT5.
CONCLUSION: Based on these data and previous results, we propose a model in which recruitment and activation of the tyrosine phosphatase SHP-1 by SSTR2 is involved in the selective negative action of somatostatin on G-CSF-R signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1β (IL-1β, 1 μg/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1β-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1β-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1β administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1β could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1β.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic–pituitary–adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic–pituitary–adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1β. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1β, we next mapped the effects of similar lesions on interleukin-1β-induced Fos expression in regions previously shown to regulate the hypothalamic–pituitary–adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1β, an outcome that is difficult to reconcile with a simple medial prefrontal cortex–bed nucleus of the stria terminalis–corticotropin-releasing factor cell control circuit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central nucleus of the amygdala (CeA) is activated robustly by an immune challenge such as the systemic administration of the proinflammatory cytokine interleukin-1β (IL-1β). Because IL-1β is not believed to cross the blood-brain barrier in any significant amount, it is likely that IL-1β elicits CeA cell recruitment by means of activation of afferents to the CeA. However, although many studies have investigated the origins of afferent inputs to the CeA, we do not know which of these also respond to IL-1β. Therefore, to identify candidate neurons responsible for the recruitment of CeA cells by an immune challenge, we iontophoretically deposited a retrograde tracer, cholera toxin b-subunit (CTb), into the CeA of rats 7 days before systemic delivery of IL-1β (1 μg/kg, i.a.). By using combined immunohistochemistry, we then quantified the number of Fos-positive CTb cells in six major regions known to innervate the CeA. These included the medial prefrontal cortex, paraventricular thalamus (PVT), ventral tegmental area, parabrachial nucleus (PB), nucleus tractus solitarius, and ventrolateral medulla. Our results show that after deposit of CTb into the CeA, the majority of double-labeled cells were located in the PB and the PVT, suggesting that CeA cell activation by systemic IL-1β is likely to arise predominantly from cell bodies located in these regions. These findings may have significant implications in determining the central pathways involved in generating acute central responses to a systemic immune challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 μg/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1β, 1 μg/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The JAK/STAT signaling pathway is essential for myogenic regeneration and is regulated by a diverse range of ligands, including interleukin-6 (IL-6) and platelet-derived growth factor-BB (PDGF-BB). Our aim was to evaluate the responsiveness of IL-6 and PDGF-BB to intense exercise, along with STAT3 activation, before and after 12 weeks of resistance training. In young men, IL-6 and PDGF-BB protein concentrations were quantified in biopsied muscle and increased at 3 h post-exercise (17.5-fold and 3-fold, respectively). The response was unaltered by 12 weeks of training. Similarly, STAT3 phosphorylation was elevated post-exercise (12.5-fold), irrespective of training status, as was the expression of downstream targets c-MYC (8-fold), c-FOS (4.5-fold), and SOCS3 (2.3-fold). Thus, intense exercise transiently increases IL-6 and PDGF-BB proteins, and STAT3 phosphorylation is increased. These responses are preserved after intense exercise. This suggests they are not modified by training and may be an essential component of the adaptive responses to intense exercise.